Printed Pages - 5

Roll No.:

322454(22)

Larrige of magazinii Irmwonfet A schemil

B. E. (Fourth Semester) Examination, Nov.-Dec. 2021

(New Scheme)

(CSE Branch)

COMPUTER SÝSTEMS ARCHITECTURE

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) in each unit is compulsory. Attempt any two from (b), (c) and (d). Part (a) is of 2 marks and part (b), (c) and (d) are of 7 marks each.

Unit-I

1. (a) What do you mean by Micro Routine?

2

(b)	Explain various types of computer instruction	
	formats. A two-word instruction is stored in	
	memory at an address designated by symbol W .	
	The address field of the instruction (stored at	
	W+1) is designated by symbol Y . The operand	
	used during the execution of the instruction is stored	
	at an address symbolized by Z . An index Register	
	contains the value X . State how Z is calculate	
	from the other addresses if the addressing mode	
	of the instruction is:	7
	(i) Direct 1811 III III III III III III III III II	
,	(ii) Indirect	
	(iii) Relative	
	(iv) Indexed	
	Minimum Vate Weeks 128	
(c)	Differentiate between hardwired control unit and	
	micro-programmed control unit.	7
(4)	Francis the working of a typical Micro progra-	
(a) =	Explain the working of a typical Micro-progra-	-
	mmed control unit with a neat diagram.	7
	Unit-II	

	(b)	Show the contents of Registers E , A , Q and SC	
		during the process of division of 10100011 by	¥
		1011 using Restoring method.	7
	(c)	Show step-by-step Multiplication Process using	
		Booth Algorithm. Assume 5 bit registers that hold	
		signed numbers are $(+15) \times (-13)$.	7
	(d)	Explain Fast adders in detail.	7
		Unit-III	
3.	(a)	Write the memory hierarchy.	2
	(b)	A two way set associative cache memory uses	
		blocks of four words. The cache can accommo-	
		date a table of 2048 words from main memory. The main memory size is 128 K \times 32.	
		(i) Formulate all pertinent information required to construct the cache memory.	
		(ii) What is the size of cache memory?	7
	(c)	The access time of cache memory is 100 ns and	
		that of main memory 1000 ns. It is estimated that	

What is divide overflow?

1	A	1
L	7	

		80% of the memory request for read and remaining	
		20% for write. The hit ratio for read access only	
		0.9. A write through procedure is used.	
		(i) What is the average access time of the system	
		considering only memory read cycle?	
		(ii) What is the average access time of the system	
		for both read and write required?	
		(iii) What is the hit ratio taking into consideration	
		the wirte cycles?	7
	(d)	Explain the working of an Associative Memory	
		with neat diagram.	7
		Unit-IV	
4.	(a)	What are Interrupts?	2
	(b)	Explain the working of Direct Memory Access	
		with a neat diagram.	7
	(c)	Differentiate between Synchronous and Asynchro-	
		nous data transfer.	7
	(d)	Explain programmed I/O with example.	7

[5]

Unit-V

5.	(a)	Define data dependency.	2
	(b)	Explain Flynn's classification of parallel architecture.	7
	(c) .	What do you understand by pipelining? Differen-	
		tiate between instruction pipeline and arithmetic	
		pipeline.	7
		**	
	(d)	A non pipeline system takes 50 ns to process a	
		task. The same task can be processed in a six-	
		segment pipeline with a clock cycle of 10 ns.	
		Determine the speed up ratio of the pipeline for	
		100 tasks. What is the maximum speedup that	
		can be achieved?	7